		ode: 20CS0516 R20 H.T.No.			
		SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS)	Y:: PU7	TUR	
		B.Tech. III Year I Semester Supplementary Examinations June/ COMPILER DESIGN	July-20	25	
T :		(Common to CSE & CSIT)	Mor	B/Low1	60
Tim	le:	3 Hours (Answer all Five Units $5 \times 12 = 60$ Marks)	max.	Mark	(s: 60
		UNIT-I	601		~~~
		Describe about different language processors used in compiler design.	CO1	L2	6M
	b	Give the differences between compiler and interpreter.	CO 1	L4	6M
		OR	~~~		
		Discuss the compiler construction tools.	CO3	L2	6M
	b	Differentiate tokens, patterns, and lexemes.	CO 1	L4	6M
		UNIT-II			
3	a	Define Ambiguity.	CO1	L1	6M
	b	Interpret how to eliminate ambiguity for the given ambiguous grammar.	CO1	L3	6M
		OR			
4	a	Discuss the types of errors.	CO2	L2	6M
	b	Explain Error recovery in predictive parsing with an Example.	CO2	L2	6M
		UNIT-III			
5	a	Explain about handle pruning.	CO 1	L2	6M
	b	Summarize SLR parsing.	CO1	L2	6M
		OR			
6	a	Give the evaluation order of SDD with an example.	CO2	L5	6M
	b	Discuss type checking with suitable examples.	CO 4	L2	6M
		UNIT-IV			
7		Analyse different types of intermediate code with an example.	C05	L4	12M
		OR			
8	a	Discuss about symbol table entries.	CO 4	L2	6M
		Describe the various operations on symbol table.	CO 4	L2	6M
		UNIT-V			
9		Interpret optimization techniques on basic blocks with simple example.	CO5	L3	12M
		OR			
10	a	Analyze simple code generator.	CO6	L4	6M
		Evaluate register allocation and register assignment techniques.	CO 6	L5	6M
				-	

4

÷.,

,

_	_				1
0.1	P.C	ode: 20CS1101 R20 H.T.No.			
		SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY	:: PUT	TUR	
		(AUTONOMOUS) B.Tech. III Year I Semester Supplementary Examinations June/J	ulv-202	5	
		INTRODUCTION TO DATA SCIENCE	,		
-		CSE(Artificial Intelligence &DataScience)			
Tin	ie:	3 Hours (Answer all Five Units $5 \times 12 = 60$ Marks)	Max.	Marl	ks: 60
		UNIT-1			
1	a	Define Data Science and discuss Benefits and uses of data science.	CO1	L1	6M
	b	Discuss the Various Processing Steps in Data Science.	CO1	L2	6M
		OR			
2		Discuss in detailed Data Cleaning operation in data science.	CO 1	L2	12M
		UNIT-II			
3		Differentiate Null Hypotheses and Alternative Hypotheses.	CO2	L4	6M
	b	Examine the application property of Wilcoxon rank-sum test.	CO2	L3	6M
		OR	000	* 4	-
4		List and discuss the four measures of significance of Association rules.	CO2	L1	6M
	D	Give the Applications of Association Rules.	CO2	L1	6M
5	a	Justify the usage of linear regression and logistic regression.	CO3	L6	4M
	b	Illustrate Logistic Regression Model.	CO3	L3	8M
		OR			
6	a	1 0	CO4	L4	4M
	b	Discriminate the way show the evaluation of decision tree is done	CO4	L5	4M
	C	Give the two approaches that help avoid over fitting in decision tree	CO 4	L2	4M
		learning.			
		UNIT-IV			
7	_	What is clustering?	CO5		6M
	b	State the advantage of using PAM.	CO5	L1	6M
•		OR	005	тч	474.47
8	a h	What is meant by k-means.	CO5	L1	4M 9M
	b	Describe k-means algorithm to find k clusters.	CO5	L2	8M
•		UNIT-V	001		1075
9		Explain how the data science team will categorize the reviews by topics.	CO6	L2	12M
		OR			

10 a What is meant by sentiment analysis. **CO6** L1 **4M b** Discriminate the methods used for sentiment analysis. **CO6** L5 **8M** *** END ***

27

× S

O.F	P.C	ode: 20CS1201 R20 H.T.No.			
		SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY	•• PU T	THR	
		(AUTONOMOUS)		IUN	
		B.Tech. III Year I Semester Supplementary Examinations June/Ju	uly-202	5	
		INTRODUCTION TO CLOUD COMPUTING			
ima	2	(CSE with Specialization in Cloud Computing) Hours Ma	ax. Ma	rker	60
me.	. 0	(Answer all Five Units $5 \times 12 = 60$ Marks)	an. 1410	HAS .	00
		UNIT-I			
1	a	Differentiate between parallel and distributed computing Paradigms.	CO1	L2	6 N
	b	Illustrate the evolution of scalable computing technology.	CO1	L2	61
		OR			
2	a	Define cluster computing.	CO1	L1	6]
		Discuss in detail about clusters of cooperative computers with neat diagram.	CO 1	L2	6]
		UNIT-II			
3	a	Analyze the Public Cloud and Private Cloud.	CO2	L4	6
•		Write Short note on Hybrid Cloud.	CO2	L1	6
	~	OR	001	~1	v
4	я	Express Pros in Cloud Computing.	CO2	L2	6
•		Analyze Cons in Cloud Computing.	CO2	L4	6
	~	UNIT-III			Ŭ
5	a	Describe virtual clusters with its advantages.	CO3	L2	6
U		Explain the resource management in virtual clusters.	CO3	L2	6
	-	OR	000		v
6	A	nalyse the virtualization for data center automation.	CO3	L4	12
v	11		005	г.	14
7	a	Explain the concept Bigtable.	CO4	L2	6
'		Explain the concept Bigtable. Explain the concept HBase.	CO4	L2 L2	6
	U	OR	0.04		U
8	E	cplain GFS in Cloud based system.	CO 4	L2	12
0		UNIT-V	0.04	Li£	14
9	a	Explain about Authentication Methods.	CO5	L2	6
		Interpret the various Authorization Methods.	CO5	L3	6
	-	OR			2
10	a	Analyze the aspects of data security.	CO5	L4	6
~ ~		Explain about provider data and its security.	CO5	L5	6
		*** END ***		20	U

01

. .

O.P.Code: 20EC0415

R20

H.T.No.

		SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS)	:: PUT	TUR	
		B.Tech. III Year I Semester Supplementary Examinations June/J ELECTROMAGNETIC THEORY AND TRANSMISSION L	-	25	
Tir	ne	(Electronics and Communications Engineering) : 3 Hours	Max.	Mark	ks: 60
		(Answer all Five Units $5 \times 12 = 60$ Marks) UNIT-1			
1	a	Estimate the electric field Intensity due to Surface charge	CO1	L4	6M
	b	Apply Gauss Law to evaluate the electric flux density at a point P due to	CO2	L3	6M
		the point charge located at the origin.			
		OR			
2		Determine the Relationship between E and V.	CO2	L3	6M
	b		CO3	L2	6M
		ordinates. Find the electric flux density D at $(1,3,-4)$.			
		UNIT-II			
3		Find the Magnetic field Intensity Due to a Straight current carrying	CO2	L3	12M
		filamentary conductor of finite length.			
		OR			
4		Explain about Non-Existence of Magnetic Mono pole.	CO2	L2	6M
	b	Determine the Magnetic Field Density due to Infinite line Current by	CO2	L3	6M
		applying Ampere's Circuit law.			
		UNIT-III			
5		Determine the Transformer EMF for the time varying fields.	CO3	L3	6M
	b	Prove that one of the Maxwell's equations is $\nabla \times H = Jd+J$.	CO3	L5	6M
		OR			
6		Analyse Why ampere's Law is In-consistent.	CO4	L4	6M
	b	Demonstrate the motional EMF and derive the expression for the	CO4	L2	6M
		maxwell equation.			
		UNIT-IV			
7		Discuss about power and Poynting vector related to electromagnetic	CO5	L4	12M
		fields.			
•		OR	~ ~ -	~ •	
8	a	Derive the expression for intrinsic impendence and propagation constant	CO5	L3	6M
	Ŀ	in a good conductor.	COF	т э	
	D	Derive the characteristics of plane wave in free space.	CO5	L3	6M
0		UNIT-V	GO		(3 -
9		Explain about S-Circle, r-Circle and x-Circle in smith chart.	CO6	L2	6M
	D	A telephone line has the following parameters: $R=30\Omega/km$, $G=0$ L =	CO 6	L3	6M
		100 mH/km, C = 20μ F/m. At 1kHz, Find the characteristic impedance,			
		propagation constant and velocity of the signal.			
10	a	OR A distortion less line has Z0=60 Ω Attenuation constant = 20 mNp/m	CO6	T 2	6M
10	a	and $u=0.6c$ (c is velocity of light) Find the primary parameters of the		LJ	UIVI
		transmission line (R L C G and λ) at 100MHz.			
	h	Discuss about Microstrip transmission lines.	CO 6	L2	6M
	2	*** END ***	200		VATE

).P.	Code: 20CS0517 R20 H.T.No.										
	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR											
		(AUTONOMOUS)										
		B.Tech. III Year I Semester Supplementary Examinations Jun DATA WAREHOUSING AND DATA MINING	e/Jul	y-2025								
	(Common to CSIT, CAD & CSE)											
Tin	le: (B Hours M	Iax. I	Iarks:	60							
		(Answer all Five Units $5 \times 12 = 60$ Marks)										
		UNIT-I										
1	a	Define Data mining? What are all points to be discussed to motivated at	CO1	L1	6M							
		a mining?	~ ~ .									
	b	Explain Data mining as a step in the process of knowledge discovery.	CO1	L2	6M							
2	a	OR Explain about Data Transformation in data Mining.	CO2	ТЭ								
-	, a b		C02		6M 6M							
	~	UNIT-II	COI	1/1	UIVI							
3	a	Discuss in detail about different types of Data Warehousing.	CO2	L6	6M							
		Distinguish between OLTP and OLAP.	CO2		6M							
		OR	COL		UIVI							
4		Explain about the Three - tier data warehouse architecture with a neat	CO2	L2	12M							
		diagram.										
		UNIT-III										
5	a	Discuss about basic concepts of Frequent Itemset mining.	CO3	L2	6M							
3	b	What are the advantages of FP-Growth algorithm?	CO3	L1	6M							
		OR										
6		Outline FP growth algorithm with an example.	CO 4		6M							
	b	How will measure from Association Analysis to Correlation Analysis.	CO 4	L2	6M							
_		UNIT-IV										
7		Distinguish between supervised and unsupervised learning.	C05		6M							
	b	What are the Issues regarding Classification and Prediction? Explain.	CO5	L1	6M							
8		OR OR	C05	TO	1034							
0		Explain about Bayesian belief networks with an example.	C05	L2	12M							
9			COC	10	1034							
9		Discuss in detail about Partitioning methods in clustering with Examples.	CU6	L2	12M							
		OR										
10)	Discuss in detail about the Applications and trends in Data Mining.	CO 6	L2	12M							
		*** END ***										

0.	P.Code: 20CS1202 R20 H.T.No.										
SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)											
	B.Tech. III Year I Semester Supplementary Examinations June/July-2025										
Tir	MOBILE APPLICATION DEVELOPMENT (CSE with Specialization in Cloud Computing) (Answer all Five Units 5 x 12 = 60 Marks)	Max. Marks: 60									
	UNIT-I										
1	a Define Android. Create an android application to display "Hello World".	CO1	L1	6M							
	b Define MAD. Explain mobile devices with its pros and cons.	CO1	L1	6M							
•	OR										
2	a Explain UI widgets in android.	CO1	L1	6M							
	b Explain Dalvik Virtual Machine.	CO1	L1	6M							
	UNIT-II										
3	Briefly explain the basic views with Example.	CO2	L2	12M							
	OR										
4	Explain	CO2	L2	12M							
	a)Progress Bar b) Spinner										
5	Write a code to store online in file which resides in sd-card.	CO4	L3	12M							
	OR										
6	Write an android application for login & registration using SQLite	CO4	L3	12M							
	database connectivity.										
3	UNIT-IV										
7	a Define	CO2	L3	6M							
	i) Broadcast Receiver ii)SMS										
	b What is the purpose of the Image Switcher?	CO2	L3	6M							
	OR										
8	Create a Simple Own Service to start and stop the service in Android.	CO2	L3	12M							
9	Explain the UI Design Guidelines for Windows Phone 8.	CO1	L1	12M							
	OR										
10	Explain about push notification.	CO1	L1	12M							
	*** END ***										

Page 1 of 1

L

1

R20

H.T.No.		
---------	--	--

ſĩ

		SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS)	Y:: PUT	TUR	
		B.Tech. III Year I Semester Supplementary Examinations Jun INTRODUCTION TO MACHINE LEARNING	e/July-	2025	
Tin	1e:	CSE(Artificial Intelligence and Machine Learning)	Max.	Marl	ks: 60
		(Answer all Five Units $5 \times 12 = 60$ Marks)			4
		UNIT-I			
1		Explain data processing and techniques used for data preprocessing.	CO1	L2	6M
	b	Analyze the real world applications of ML.	CO1	L4	6M
		OR			
2		Discuss the Machine Learning techniques with neat diagrams.	CO2	L2	12M
		UNIT-II			
3	a	Explain in detail about polynomial regression technique.	CO2	L2	6M
	b	Differentiate between classification and regression.	CO2	L4	6M
		OR			
4		Explain Decision Tree Classification technique with an example.	CO 1	L2	12M
		UNIT-III			
5	a	Describe Artificial Neural Networks.	CO3	L1	4M
	b	Sketch the types of architectures of neural networks.	CO3	L2	8M
		OR			
6		Explain linear discriminant analysis with an example.	CO4	L2	12M
		UNIT-IV			
7	a	Write about bias and variance.	CO 4	L3	6M
	b	Describe the Bernoulli density. Give an example.	CO3	L1	6M
		OR			
8		Explain various model selection procedures.	CO 4	L2	12M
		UNIT-V			
9	a	List the features of multivariate normal distribution.	CO6	L1	6M
	b	Write the applications of multivariate normal distribution.	CO4	L3	6M
		OR			
10		State and explain tuning complexity.	CO5	L1	12M
		*** END ***			

O.P.Code: 20EC0416

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY .: PUTTUR (AUTONOMOUS)

B.Tech. III Year I Semester Supplementary Examinations June/July-2025 MICROPROCESSORS AND MICROCONTROLLERS

(Electronics & Communications Engineering)

Time	e: 3	B Hours	Max. Ma	rks:	60
		(Answer all Five Units $5 \ge 12 = 60$ Marks)			
		UNIT-I			
1	а	How does Microprocessor works? Explain in details.	CO2	L1	4M
-		List different computer languages and explain them.	CO2	L2	8M
	~	OR	001		01.1
2		Draw a block diagram of Microprocessor based system and explain the	cO1	L4	12M
-		functions of each component: Microprocessor, Memory and I/O and		2.	
		their line communication.			
		UNIT-II			
3	я	Draw the pin diagram of the 8085 microprocessor and categorize the	CO2	L4	8M
		pins based on function.	001	2.	01.12
	h	Outline the role of the following pins in the8085 microprocessor	CO2	L2	4M
	~	i) RESET OUT ii) ALE iii) HOLD & HLDA iv) TRAP			
		OR			
4	a	Discuss conditional jump and un conditional jump instruction with an	CO3	L2	6M
		example.			
	b	Discuss the data format and storage with an example.	CO2	L2	6M
		UNIT-III			
5	a	Draw the internal architecture of 8051 microcontroller and explain the	CO3	L2	8M
		function of each block present in it.			
	b	List the features of 8051 microcontroller.	CO2	L1	4M
		OR			
6	a	Draw and explain a special function of the interrupt enable (IE) register.	CO3	L2	6M
		8051µC			
	b	Explain about program counter and data pointer	CO4	L2	6M
		UNIT-IV			
7	a	Describe the different types of addressing mode supported by 8051 with	CO4	L2	6M
		suitable examples.			

- b List out the any five instructions for immediate addressing modes and CO4 **6M L1** indirect addressing modes with suitable example.
 - OR

8	a	List varie	ous ari	thmetic	operations j	performed in	8051 microcon	ntrol	ler	CO4	L1	2M
	b	Explain	any	Five	arithmetic	operations	Instructions	of	8051	CO4	L2	10M
		microcor	troller	r with a	n example.							

UNIT-V

a List out types of 16 key layout and draw the diagram of the lead per key CO5 L4 **6M** 9 keyboard configuration. **b** Design the x-y matrix keyboard and coded key board. **CO5 L6 6M** OR

- **10 a** Explain and design the 2*4 coded keyboard. **CO5 L2 6M** b Illustrate the seven-segment numeric led Display and explain the CO5 **L3 6M** operation seven segment.
 - *** END ***

÷

R20

H.T.No.

		SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS)	(:: PUT)	ſUR	
		B.Tech III Year I Semester Supplementary Examinations June	ə-2025		
		SOFTWARE ENGINEERING (Computer Sceince and Engineering)			
Tin	ıe:	3 Hours	Max.	Mark	s: 60
		(Answer all Five Units $5 \times 12 = 60$ Marks) UNIT-I			
1	a	What is Software Process? Distinguish any two Process Models.	CO2	L4	6M
	b	How Process framework is created for software? Explain. OR	CO1	L2	6M
2	a	What is Agility? Illustrate any four Agile Process Models	CO2	L2	6M
	b	Explain in detail about Agile Unified Process	CO2	L2	6M
		UNIT-II			
3	a	Who is a stakeholder? In what way he/she is being used in Software Development Process .	CO2	L1	6M
	b	How to establish the ground work for understanding of software	CO2	L2	6M
		requirements. Explain the steps in it.			
		OR			
4	a	What are all the UML Models that supplement the Use-case diagram? Explain.	CO3	L2	6M
	b	Explain in detail about Data Modeling Concepts.	CO3	L2	6M
5	a	What is the Design process? Discuss software quality guidelines and attributes	CO3	L2	6M
	b	Explain common characteristics in the evolution of software design.	CO1	L2	6M
6	a	Discuss briefly about Architectural design and their tasks.	CO4	L2	6M
	b	Justify the Assessing of Alternative Architectural Designs for Software.	CO4	L5	6M
7	я	Briefly explain about User Interface Design Process.	CO4	L2	6M
'		Express the rules of User Interface Design.	CO4	L2 L2	6M
		OR	001		UIVE
8	a	Define five quality attributes of WebApp Design.	CO5	L1	6M
		Explain in detail about Aesthetic design	CO5	L2	6M
		UNIT-V			
9	a	Distinguish between Verification and Validation with example	CO4	L4	6M
		What is Software Testing? Why it is important before deploying the software.	CO5	L1	6M
		OR			
10		What are the Testing Methods applicable at the Class Level? Explain. Illustrate Testing Strategies for Object Oriented software .	CO6 CO6	L1 L2	6M 6M

*** END ***

7**

O.P.Code: 20EE0216

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

H.T.No.

(AUTONOMOUS)

R20

B.Tech III Year I Semester Supplementary Examinations June-2025

ELECTRICAL MEASUREMENTS AND INSTRUMENTATION

(Electrical and Electronics Engineering)

Tin	ne:	3 Hours	Max.	Mark	s: 60
		(Answer all Five Units 5 x 12 = 60 Marks)			
1	a	Explain the construction and working of permanent magnet moving coil instruments.	CO1	L1	8M
	b	A moving coil instrument gives a full -scale deflection of 10mA when the potential across its terminals is 100mV. Calculate shunt resistance for a full - scale deflection corresponding to 100 A	CO 1	L2	4M
_		OR			
2	a b	Describe the construction and working of attraction type MI instrument? List the advantages & disadvantages of MI type instruments UNIT-II	CO1 CO1	L2 L1	6M 6M
3	a	Explain classification of resistances. What are the different types of methods used for measurement of low, medium and high resistance?	CO2	L2	6 M
	b	Draw the circuit diagram of a Wheatstone bridge and derive the condition for balance.	CO2	L3	6M
		OR			
4		An ac bridge circuit working at 1 KHz has its arms as follows: Arm AB: 0.2 μ f capacitance Arm BC: 500 ohm resistor Arm CD: unknown impedance Arm DA: 300 ohm resistor in parallel with 0.1 μ f capacitor Find R and L or	CO2	L3	12M
		C constants of the Arm CD considering it as a series circuit.			
5	a	Explain the constructional details of electro dynamometer type wattmeter with a neat sketch.	CO3	L2	6M
	b	Explain the advantages and disadvantages of single phase Induction type Energy meter.	CO3	L2	6M
		OR			
6	a b	Correlate how the measurements are made using LPF and UPF wattmeters. Explain errors caused by vibration of moving system electro dynamometer type wattmeter.	CO3 CO3	L5 L2	6M 6M
		UNIT-IV			
7		Explain the construction of (i) Current transformer (ii) Potential transformer ratio and phase angle errors.	CO 4	L2	12M
		OR			
8	a	What are the parameters to be considered in selecting a transducer for a particular application?	CO4	L1	6M
	b	Illustrate the method for measurement of temperature with use of a) RTD b) IC Sensor	CO4	L2	6M
9	a	Describe the construction and working of Flux meter.	CO5	L2	6M
,		Determine leakage factor with flux meter. OR	CO5	L2 L3	6M
10		Describe briefly how the following measurements can be made with the use of CRO (i) Frequency. (ii) Phase angle. (iii) Voltage. *** END ***	CO5	L2	12M

0.	P.0	Code: 20EC0417 R20 H.T.No.			
		SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY	:: PUTT	UR	
		(AUTONOMOUS) B.Tech III Year I Semester Supplementary Examinations June	-2025		
		DIGITAL SIGNAL PROCESSING (Electronics and Communication Engineering)			
Tim	e: 3	Hours (Answer all Five Units $5 \times 12 = 60$ Marks)	Max. M	larks:	60
		UNIT-I			
1	a	Compute the 4-point DFT for the sequence	CO1	L1	7M
		$x(n) = \begin{cases} 1; & 0 \le n \le 2 \\ 0, & otherwise \end{cases}$			
	b	State and prove any three properties of DFT. OR	CO1	L2	5M
2		Compute an 8-point DFT of the sequence $x[n] = \{0, 1, 2, 3, 4, 5, 6, 7\}$ using Radix-2 DIF FFT algorithm.	CO1	L3	12M
		UNIT-II			
3	a	Construct the direct form I and direct form II of the LTI system describe the 3 3 1	CO2	.L3	6M
		equation $y(n) = -\frac{3}{8}y(n-1) + \frac{3}{32}y(n-2) + \frac{1}{64}y(n-3) + x(n) + 3x(n-1)$			
	b	Explain the steps in the design of analog Butter-worth low pass filters OR	CO2	L2	6 M
4		Design a digital Chebyshev IIR filter using using the following constraints:	CO3	L2	12M
		LET T=1sec, applying bi-linear transformation. $0.707 \le H(w) \le 1$; $0 \le w \le 0.2n$			
		$ H(w) \le 0.1$; $0.5n \le w \le \pi$			
5	a	Construct the direct form realization of system function	CO3	L3	6M
	b	$H(z) = 1 + 2z^{-1} - 3z^{-2} - 4z^{-3} + 5z^{-4}$ Explain the steps to be followed in the designing of FIR filters using fourier	CO3	L2	6M
	U	series method.	COS	LZ	OIVI
6		OR Design of FIR filter using with the following data, using hamming window	CO3	L3	12M
U			COS	LJ	12111
		with N=7. $H_d(e^{jw}) = \begin{cases} 1; & -\frac{\pi}{4} \le w \le \frac{\pi}{4} \\ 0, & w \le \pi \end{cases}$			
7		UNIT-IV Discuss briefly about different types number representation with	CO4	L3	<u>(M</u>
/		examples.	04	LJ	6M
	b	Compare fixed point and floating point arithmetic. OR	CO4	L2	6M
8		Find the steady state variance of the noise in the output due to quantization	CO5	L3	12M
	1	of input for the first order filter. $y(n) = ay(n-1) + x(n)$			
9	a	Explain two categories of DSP's in detail.	CO6	L2	6M
	b	What is VLIW architecture. Draw and explain in brief with diagram.	CO6	L2	6M
10		OR Explain different applications of PDSPs in detail.	CO 6	L2	12M
		*** END **			

÷,

3

O.P.Code:	20ME0316
-----------	----------

R20	H
1120	

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY .: PUTTUR (AUTONOMOUS) B.Tech III Year I Semester Supplementary Examinations June-2025 METAL CUTTING AND MACHINE TOOLS

		(Mechanical Engineering)			
Tim	le:	3 Hours	Max.	Marl	ks: 60
		(Answer all Five Units $5 \times 12 = 60$ Marks)			
		UNIT-I			
1	a	Explain briefly orthogonal and oblique cutting with neat sketch.	CO1	L1	6M
	b	Discuss about machining of metals.	CO1	L2	6M
		OR			
2	a	Define the single point cutting tool elements.	CO1	L1	6M
	b	Derive an equation for chip thickness ratio and shear plane angle.	CO 1	L2	6M
		UNIT-II			ē)
3	a	Define cutting speed, feed and depth of cut.	CO2	L1	6M
	b	Explain the stress and strain acting on a chip.	CO2	L2	6M
		OR			
4	a	Explain work done in metal cutting process.	CO2	L1	6M
	b	Give the broad classification of cutting fluids and explain them briefly.	CO2	L2	6M
		UNIT-III			
5		Draw the engine lathe and label the parts. Discuss the functions of the	CO3	L1	12M
-		lathe parts.	000		
		OR			
6		Explain lathe machine accessories with neat sketches.	CO3	L2	12M
v		-	005	JL <i>4</i>	12111
_		UNIT-IV			
7		Explain the working of any one drilling machine with neat sketch.	CO 4	L2	12M
		OR			
8	a	Discuss about any four of the drilling operations with neat sketches.	CO 4	L3	6M
	b	Discuss briefly with neat sketch, a horizontal boring machine.	CO4	L3	6M
		UNIT-V			
9		How grinding machines are classified? Explain plain cylindrical	CO5	L2	12M
		grinding machine with neat sketch.			
		OR			
10		Distinguish between Grinding, lapping and honing.	CO5	L4	12M
		*** END ***			

-

R20

H.T.No.

		SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY	/:: PUT	ΓUR	
		(AUTONOMOUS)			
		B.Tech. III Year I Semester Supplementary Examinations Jun CYBER SECURITY	e/July-:	2025	
/D1		(Computer Science & Information Technology)			
Time	9: 3		lax. Ma	rks:	60
		(Answer all Five Units $5 \ge 12 = 60$ Marks) UNIT-1			
1	a	Elaborate the Cybercrime and its related security measures.	CO1	L4	6M
		Explain various classification of cyber crimes with examples.	CO1	L4 L3	6M
		OR +	001	LU	UNI
2	a	Illustrate Cybercrimes Cases of Various Categories under IPC Section.	CO1	L3	6M
	b	Dissect the Incidence of Cybercrimes in Cities in detail.	CO1	L2	6M
		UNIT-II			
3		Explain various types of cyber Stalking attack.	CO2	L4	6M
	b	Define the cyber café. Analyze the challenges faced by Cyber café and	CO2	L3	6M
		Explain in detail.			
		OR			
4	a b	Discuss and Elaborate the Cyber cafe and how it infers the victims.	CO2	L3	6M
	U	Discuss about how the BOTNETS are acts as Fuel for Cybercrime in detail.	CO2	L4	6M
		UNIT-III			
5	я	Compare Mobile Computing Vs Wireless Computing.	CO3	T 4	<u>A</u>
Ľ	b	Distinguish Malwares, viruses and worms.	CO3	L4 L3	6M 6M
		OR	005	13	UIVI
6	a	List out few Tips to Secure your Cell/Mobile Phone from being	CO3	L3	6M
		Stolen/Lost.			
	b	Discuss organizational measures for handling the mobile devices.	CO3	L2	6M
		UNIT-IV			
7		Classify different techniques used in cybercrime.	CO4	L4	6M
	D	Who are Anonymizers and how they get affected by scams in	CO 4	L3	6M
		cybercrime? Explain.			
8	a	Apply the concept of Daniel of Service with an example and Explain	CO 4	L3	6M
	b	How hacker use the SQL injections to hack the information. Summarize	CO4	L3 L2	6M
		it.	001		UIVI
		UNIT-V			
9	a	Discuss the various organizational implications with example.	CO5	L4	6M
		Describe the cost of cybercrimes with examples.	CO5	L3	6M
		OR			
10	a	List the security and privacy implications in detail.	CO5	L3	6M
	D	Distinguish proactive and reactive approach to security.	CO5	L2	6M
		*** END ***			

0	. P .	Code: 20CS0531 R20 H.T.No.			
		SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS)	Y:: PUT	TUR	
		B.Tech. III Year I Semester Supplementary Examinations Jun SOFT COMPUTING	e/July-	2025	
Ti	me	(Common to CSE, CSM & CAI)	Max.	Marl	cs: 60
1		(Answer all Five Units $5 \ge 12 = 60$ Marks) UNIT-I			
75. 75		 Distinguish between Supervised Learning and Unsupervised Learning. Describe the different activation functions in Neural Networks. 	CO1 CO1	L4 L2	6M 6M
2	a l	OR List out the different Learning rules and terminology in ANN. Describe Hebb Network in Artificial Neural Network.	CO1 CO1	L2 L2	6M
3	a	UNIT-II Explain Hamming neural network with neat diagram.	CO1	L2 L2	6M 6M
	b	• Explain Max network with architecture OR	CO2	L2 L2	6M
4	a b	Illustrate the Support Vector Machine .	CO2 CO2	L3 L1	6M 6M
5	a	UNIT-III Discuss the various operations and properties on Classical Sets with simple examples.	CO3	L2	6M
	b	List out the various operations and composition operations on Classical relations explain it.	CO3	L1	6M
6	a	OR Demonstrate the membership functions in fuzzy logic.	CO3	L3	6M
	b	Define Fuzzification and explain membership value assignment in fuzzy logic	CO3	L2	6M
7	a b	Analyze Inversion and Deletion Operators in GA.	CO4	L4	6M
8		Draw the flow chart for the working principle of Genetic Algorithm.	CO4 CO4	L1 L2	6M 6M
		Explain it. Briefly explain Convergence of Genetic Algorithm.	CO4	L2 L2	6M
9	a	Explain the various components in Fuzzy Rule Base System.	CO5	L2	6M
10		Compare Neuro processing and Fuzzy Processing . OR	CO5	L4	6M
-10	b	List out the various types of hybrid systems. Explain the basic categories of Hybrid system with neat architectures. *** END ***	CO5 CO5	L1 L3	6M 6M

Page 1 of 1

H.T.No.

R20

					<u></u>					
SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR										
	(AUTONOMOUS)									
	B.Tech. III Year I Semester Supplementary Examinations June/July-2025 CLOUD COMPUTING									
		CSE (Artificial Intelligence & Data Science)								
Tir	ne	3 Hours	Max.	Mark	cs: 60					
		(Answer all Five Units $5 \times 12 = 60$ Marks)								
		UNIT-I								
1	a	Discuss the following	CO1	L1	6M					
		i) computational grid ii) data grid iii) network grid								
	b	What is SOA? Describe with its architecture.	CO1	L2	6M					
		OR			0111					
2	a	Draw and explain the cloud architecture.	CO1	L2	6M					
		Explain layered architecture of grid.	CO1	L2	6M					
		UNIT-II	COI		UIVI					
3	a	Analyze the Public Cloud and Private Cloud.	000							
5		Analyze Cons in Cloud Computing.	CO2	L4	6M					
	U		CO2	L4	6M					
4	•	OR Recall a short note on SLA.	~~~							
4			CO2	L1	6M					
	D	Identify the Approaches in SLA Management.	CO2	L2	6M					
		UNIT-III								
5	a	Illustrate the virtualization structures available with neat diagram.	CO3	L3	6M					
2	b	Illustrate I/O Virtualization with an example.	CO3	L3	6M					
		OR								
6	a	Summarize the Memory Virtualization concept.	CO3	L2	6M					
	b	Explain the resource management in virtual clusters.	CO3	L2	6M					
		UNIT-IV								
7	a	Explain about Authentication Methods.	CO5	L2	6M					
		Explain about provider data and its security.	CO5	L2 L2						
		OR	COS	1.2	6M					
8	a	Analyze the aspects of data security.	C05	T 4	(M					
•		List and Explain the activities supported by IAM.	CO5	L4	6M					
	~		CO5	L1	6M					
•		UNIT-V								
9		Give the factors that promote the adoption of MCC.	CO6	L2	6M					
	b	Discuss the context management architecture based on IRNA with neat	CO6	L2	6M					
ŝ.		diagram.								
		OR								
10		What do Partitioning Strategies mean? How is ADPS implemented for	CO6	L2	6M					
		Program partitioning?								
	b	Explain about general security in mobile cloud computing.	CO6	L2	6M					
		*** END ***								

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

H.T.No.

B.Tech. III Year I Semester Supplementary Examinations June/July-2025

R20

FUNDAMENTALS OF ARTIFICIAL INTELLIGENCE

(CSE with Specialization in Cloud Computing)

Ti	Time: 3 Hours			Max. Marks: 60				
		(Answer all Five Units $5 \times 12 = 60$ Mafks)						
		UNIT-I						
1		Discuss in detail about Intelligent System with examples.	CO1	L2	12M			
•		OR		L2	6M			
2								
	b	What are the capabilities of a computer in terms of AI.	CO1	L1	6 M			
3		Analyze the Blind Search and its Types? Explain any two in detail with	CO2	L4	12M			
		Example.						
		OR						
4	a	Discuss in detail A* Search and IDA* Search with an example.	CO2	L4	6M			
	b		CO2	L5	6M			
		technique.						
		UNIT-III =						
5		Describe in brief about Resolution Refutation in Proportional Logic.	CO3	L2	12M			
		OR						
6		Explain the concept of Predicate Logic with examples.	CO4	L2	12M			
		UNIT-IV						
7		How KR using Semantic Network is done. Explain in detail.	CO5	L1	12M			
0		OR						
8		Represent the following facts using partitioned semantic nets:	CO5	L2	12M			
		i) The dog bit the mail carrier.ii) Every dog has bitten a mail carrier.						
		ii) Every dog has bitten a mail carrier.iii) Every dog in town has bitten the constable.						
		iv) Every dog has bitten every mail carrier						
		UNIT-V						
9		Explain Components of Expert Systems in detail.	CO6	L2	12M			
,		OR		LZ	12111			
10	a	What is Dempster Shafer Theory? List out its Characteristics,	CO6	L1	6M			
		Advantages and Disadvantages.	000	144	VITE			
	b	What is Blackboard System Approach in AI. Why it is considered as	CO6	L4	6M			
		Expert System Model?						
		*** END ***						

	H.T.No.
--	---------

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY .: PUTTUR (AUTONOMOUS) B.Tech. III Year I Semester Supplementary Examinations June/July-2025 **CRYPTO CURRENCY AND INTRODUCTION TO BLOCKCHAIN TECHNOLOGY** CSE (Internet of Things and Cyber security including Block-Chain Technology) **Time: 3 Hours** Max. Marks: 60 (Answer all Five Units $5 \times 12 = 60$ Marks) UNIT-I 1 Explain Hadoop Distributed File System. **CO1** L5 **12M** OR Write about ECDSA digital signature in detail. 2 **CO1 L3 12M** UNIT-II 3 **a** Explain about the need of block chain. **CO2** L5 **6M b** What type of records can be kept in the Blockchain? Is there any **CO2** L2 **6M** restriction on the same? OR 4 a Compare public and private blockchain? **CO2 L3 6M** b Distinguish between Bitcoin blockchain and Ethereum blockchain. **CO2 L4 6M** UNIT-III 5 Compare Proof-of-work and Proof-of-stake. **CO3** L2 **12M** OR 6 Explain Nakomoto consensus algorithm. **CO3** L5 **12M UNIT-IV** Define Cryptocurrency. Explain the features of crypto currency. 7 **CO4** L1**12M** OR 8 **a** Write in detail about GHOST. **CO4** L3 **5M b** Examine Bitcoins protocols in detail. **CO4 L4 7M UNIT-V** 9 Explain about roots of Bitcoin. **CO5** L2 **12M** OR 10 Explain Blockchain applications. **CO5** L5 **12M**

0. P	.Code: 20CE0136 R20 H.T.No							
SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)								
E	B.Tech. III Year I Semester Supplementary Examinations June/July-2025 FOUNDATION ENGINEERING							
Tim	e: 3 Hours (Civil Engineering)	Max.	Mar	ks: 60				
	(Answer all Five Units $5 \times 12 = 60$ Marks)							
8	UNIT-I							
1	What are the assumptions of earth pressure theory and derive an	CO1	L2	12M				
	expression for Rankines Earth pressure in cohesive soils?							
	OR							
2	Explain various types of retaining walls with neat sketch.	CO1	L2	12M				
	UNIT-II							
3	Discuss effect of water table on the bearing capacity of the soil with neat	CO2	L2	12M				
	sketch.							
	OR							
4	What are different types of settlements that occur in a foundation?	CO2	L2	12M				
	UNIT-III							
5	How would you estimate the load carrying capacity of a pile by using	CO3	L2	12M				
	dynamic formulae?							
	OR							
6	Explain in detail In-situ penetration tests for pile capacity.	CO4	L1	12M				
	UNIT-IV							
7	Explain various measures for rectification of Tilts and Shifts with neat	CO5	L2	12M				
	sketch.							
	OR							
8	Explain the construction of Floating caisson with the help of neat sketch.	CO5	L2	12M				
54	UNIT-V							
9	Explain the pressure distribution and stability of free cantilever sheet	CO6	L3	12M				
	pile with neat sketch.							
	OR							
10	Explain the procedure used in the analysis of the sheet pile with fixed	CO6	L2	12M				
	earth support with neat sketch using equivalent beam method.							

٠

7

0).P	Code: 20EC0430 R20 H.T.No.			
-	-	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOL	0GY::]	PUTT	UR
		(AUTONOMOUS) B.Tech. III Year I Semester Supplementary Examinations Jun			
		ELECTRONIC MEASUREMENTS AND INSTRUMENTA	ie/July TION	-2025)
Ti	m	(Electrinics and Communications Engineering)			
		(Answer all Five Units $5 \ge 12 = 60$ Marks)	Max.	Mar	ks: 60
1	8	UNIT-I Describe the construction and working of a Multimeter using a neat	CON	T 1	
		circuit diagram.		L1	6M
	ł	For the following measured data $X_1 = 49.7$; $X_2 = 50.1$; $X_3 = 50.2$; $X_4 = 49.6$; $X_4 = 49.6$; $X_4 = 49.7$; $X_4 = 49.7$; $X_5 = 49.7$; $X_6 = 49.7$; $X_7 = 50.2$; $X_8 = 50.2$	CO1	L3	6M
		49.6; $X_5 = 49.7$, calculate (i) Arithmetic mean (ii) Deviation of each value (iii) Algebraic sum of the Deviations.			
		OR			
2	a	Write a short note on (i) Gross Errors (ii) Systematic errors (iii) Random	CO1	L1	6M
-	′ h	errors. With a neat sketch, explain about thermocouple type RF ammeter.	001		0.5
		UNIT-II	C01	L2	6M
3	a	Explain in detail the important features of CRT.	CO1	L2	6M
	b	Describe in detail the construction and working of a Digital Storage Oscilloscope.	CO1	L2	6M
		OSCHIOSCOPE.			
4	a	With neat sketch, explain in detail about Horizontal amplifier.	CO2	L2	6M
	b	Write a short notes on CRO Probes.	CO1	L2	6M
5	9	Draw the block diagram of logic and many the block diagram			
5	a b	Draw the block diagram of logic analyzer and explain its working. List the Specifications of random noise generator	CO4 CO3	L2 L2	6M
		* OR	COS	L2	6M
6		With a neat sketch, explain the operation of arbitrary waveform generator.	CO5	L2	6M
-	b	Explain the working principle of spectrum analyzer.	CO3	L2	6M
7		Describe the operation of the Wheatstone bridge and derive the expression for DC resistance.	CO3	L3	12M
8	a	OR Derive the expression of an unknown resistance using Kelvin's bridge	004	10	0.5
-	b	An A.C bridge has Arm AB-capacitor of 0.1μ F in parallel with 2K Ω	CO4 CO4	L2 L3	6M 6M
		resistor, Arm AD-resistance of 5K Ω , Arm BC capacitor of 0.25 μ F, Arm		~~~	UNI
		C_D -unknown capacitor C_X and R_X in series and frequency 2KHz. Determine the unknown capacitance.			
		UNIT-V			
9		Describe the operation of	CO5	L2	12M
		i) Resistive transducers iii) Inductive transducers			
		iii) Inductive transducers OR			
10	a	Explain in detail about Vibration Transducer.	CO6	L2	6M
*	b	Write the advantages & disadvantages of LVDT.	CO6	L2	6M
		*** END ***			

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

(AUTONOMOUS)

B.Tech. III Year I Semester Supplementary Examinations June/July-2025 NON-CONVENTIONAL ENERGY RESOURCES

(Open Elective (OE) - I)

1	ſ'n	ne: 3 Hours	Max. Marks: 60			
		(Answer all Five Units $5 \times 12 = 60$ Marks) UNIT-I				
1	a	Define Conventional and Non-Conventional energy with examples.	CO1	L1	6M	
	b	Outline the merits and demerits of Conventional energy sources.	CO 1	L2	6M	
		OR				
2	a	Explain the working of the Pyranometer with a neat sketch.	CO1	L2	6M	
	b	Illustrate the working of the Pyrheliometer with a neat sketch.	CO1	L2	6M	
		UNIT-II				
3	a	Explain Solar Radiation.	CO2	L2	6M	
	b	Outline the challenges and remedies associated in the use of solar	CO2	L2	6M	
		energy.				
		OR				
4		Differentiate flat plate collector with concentrating type collector.	CO2	L2	6M	
	b	Describe the process of space heating with solar energy.	CO2	L2	6M	
		UNIT-III				
5		Explain the process of wind formation.	CO3	L5	6M	
	b	Differentiate between HAWT and VAWT.	CO3	L4	6M	
		OR	~~~			
6	a	Discuss the importance of measuring wind speed and name its	CO3	L2	6M	
	т.	measuring instruments.	CO 2	т 1	(M	
	b	List the merits and demerits of wind energy.	CO3	L1	6M	
_		UNIT-IV	~~ .			
7	a	Define biomass and why is it called renewable energy?	CO4	L1	6M	
	b	What are the different forms of bio-energy?	CO4	L1	6M	
0		OR Classify the Diamage energy equation systems and explain them in	CO4	1.2	<u>AM</u>	
8	a	Classify the Biomass energy conversion systems and explain them in brief.	CO4	L2	6M	
	h	Discuss the fermentation, aerobic and anaerobic digestion processes.	CO4	L2	6M	
	U	UNIT-V	004		UIVI	
•			C05	T A		
9		List out the merits and demerits of hydrogen energy.	CO5	L4	6M	
	b	Explain the hydrogen production through Electrolysis process.	CO5	L2	6 M	
10	a	What is the geothermal energy? Explain its extraction process.	CO5	L1	6M	
10		Explain Geothermal binary cycle power plant with neat diagram.	CO5	LI L2	6M	
	U	*** END ***	005		UIVE	

O.P.Code: 20EE0227

i.

P20	
KZU	

H.T.No.

	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)							
	B.Tech. III Year I Semester Supplementary Examinations June	a/. hulv_4	2025					
	GENERATION OF ENERGY FROM WASTE	siduly-	2023					
	(Open Elective (OE) - I)							
Time	e: 3 Hours	Max.	Marl	s: 60				
	(Answer all Five Units $5 \times 12 = 60$ Marks)							
	UNIT-I							
		001	та	103.6				
1	Explain the following gasifies with neat sketches.	CO 1	L2	12M				
	i) Updraft ii) Down draft gasifier							
	OR							
2	What are the advantages and disadvantages of gasification? What are the	CO1	L1	12M				
	advantages and disadvantages of incineration?							
	UNIT-II							
3	Explain the following types of charcoal production processes	CO3	L2	12M				
~	i) Earth kiln ii) Brick kiln iii) Steel kiln	005						
4	OR	COA	T 4	1014				
4	Write short notes on	CO2	L1	12M				
	i) Slow pyrolysis method ii) Flash pyrolysis method							
	iii) Fast Pyrolysis							
	UNIT-III							
5	Explain the design, construction and operation of downdraft gasifier.	CO4	L2	12M				
	OR							
6	Draw Gasifier engine arrangement for production of Electric power and	CO4	L3	12M				
	explain the methodology.							
	UNIT-IV							
-		<u> </u>		107 -				
7	Explain Design, Construction and Operation of Inclined Grate	CO5	L2	12M				
	Combustor.							
	OR							
8	What is meant by exotic design of Biomass Stove? Explain in detail.	CO5	L1 ·	12M				
	UNIT-V							
9	What is meant by Biomass resources? Classify biomass resources based	CO 6	L3	12M				
-	on their application.	~~~	~~					
	OR							
10	Write short notes on	CO6	Τ1	1234				
10			L1	12M				
	(i) Urban Waste to Energy Conversion (ii) Biomass Energy							
	Programme							
	444 TANTA 444							

		SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS)	:: PUT	TUR	
		B.Tech. III Year I Semester Supplementary Examinations June INTRODUCTION TO COMMUNICATION SYSTEMS		2025	
Time:		3 Hours (Open Elective (OE) - I) (Answer all Five Units $5 \times 12 = 60$ Marks)		Mark	s: 60
		$\frac{(1 \text{ Inswer all 1 ive officis 5 x 12} - 00 \text{ Iviarks})}{\text{UNIT-1}}$			
1		Define modulation. Classify different types of modulation. Explain the need for Modulation.	CO2 CO2	L1 L2	6M 6M
		OR			UIVA
2	a	What is DSB-SC Modulation? Explain the Time and Frequency domain expressions of DSB-SC wave.	CO3	L1	6M
	b	Define demodulation. Explain any one amplitude demodulation Technique.	CO3	L1	6M
		UNIT-II			
3		Define Frequency Modulation with necessary waveforms. Derive the expression of Frequency modulation.	CO2 CO3	L1 L3	6M 6M
		OR			
4		Describe the functionality of each block of phase shift discriminator. Explain the block diagram of indirect method in FM generation.	CO2 CO2	L2 L2	6M 6M
5	a	UNIT-III Explain briefly about Signal to Noise Ratio.	001	1.0	0.
5		Calculate the input signal to noise ratio for an amplifier with an output signal to noise ratio of 16 dB and a noise figure of 5.4 dB.	CO1 CO1	L2 L4	6M 6M
		OR			
6		Explain Pulse Amplitude modulation with its waveforms.	CO3	L2	6M
	b	Explain the process of demodulation of a PAM signals.	CO 1	L2	6M
7		Explain the function of each block of Digital communication system.	CO1	L2	6M
	b	Discuss the different types of Quantization in detail. OR	CO5	L2	6M
8	a	Draw the block diagram of ASK modulator and demodulator and explain the operation.	CO6	L1	6M
	b	Compare PCM, DPCM, and DM.	CO 4	L4	6M
9	a	Explain third generation (3G) wireless networks.	CO 1	L2	6M
-		A spectrum of 30 MHz of bandwidth is allocated to a particular FDD	CO1	L2 L3	6M
		cellular telephone system which uses two 25 kHz simplex channels to			
		provide full duplex voice and control channels, compute the number of			
		channels available per cell if a system uses (i) four-cell reuse, (ii) seven-cell reuse, and (iii) 12-cell reuse. If 1 MHz of the allocated			
		spectrum is dedicated to control channels, determine an			
		equitable distribution of control channels and voice channels in each cell for each of the three systems.			
		OB			

H.T.No.

R20

OR

		OK			
10	a	Explain the multiple access schemes for narrowband systems.	CO1	L2	6M
	b	Differentiate FDMA, TDMA and CDMA.	CO6	L2	6M

0.	O.P.Code: 20HS0813 R20 H.T.No.								
	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY :: PUTTUR								
	(AUTONOMOUS) B.Tech. III Year I Semester Supplementary Examinations June/July-2025								
				MENT SCIE			ciouly-	2025	
		0.77	(Open El	ective (OE) -	I)				
T1	me:	: 3 Hours	ver all Five	e Units 5 x 12	= 60 N	Marks)	Max.	Mark	s: 60
		(1115)		UNIT-I	001	(und)			
1	a	What are the 14 principles of a	administra		ent?		CO1	L1	6M
I	u b	"Management is an art of gett		_		'– Discuss.	CO1	L1 L2	6M
	~			OR					01/2
2	a	Illustrate any three types of or	ganization	structures.			CO 1	L3	6M
	b	Assess which organizational s	tructure is	suitable struc	ture for	r managing	CO1	L5	6M
		complex project(Matrix organ	ization).						
				UNIT-II					
3	a	What is meant by Inventory?		he need for in	nventoi	ry control at	CO2	L4	6M
	_	different stages of production							
	b	Explain importance of ABC A	•	•			CO2	L5	6M
		each class in case of a	mobile el	lectronics se	ervice-c	lealer with			
		Sony/Nokia/Samsung.		OR					
4	a	Distinguish between Job prod	uction and		ction.		CO2	L5	6M
•	b	Elucidate the Quality assurance		57000			CO2	L4	6M
		UNIT-III							
5	a	Define Human Resource Man	agement a	nd describe its	s impor	tance.	CO3	L1	6 M
	b	Managerial and operative fun	ction is to	ol to improve	e effici	ency-Justify	CO3	L5	6M
		your answer.							
				OR	0	TT • • 1	003	T 1	
6	a	What is the purpose of assess analysis done?	sing currer	it numan resc	ources?	How is job	003	L1	6M
	b	What do you understand by er	nnlovee or	ievances in a	n oroan	ization?	CO3	L1	6M
	L.			UNIT-IV			000		U.L
7		What is the Corporate Plannin			ortant fo	or long term	CO 4	L4	12M
		success of any business organ	•	*		0			
				OR					
8	a	Discuss about basic network to	erminolog	y application.			CO4	L2	6M
	b	Indicate Rules for drawing net	work anal	ysis and discu	iss its to	erminology.	CO4	L2	6M
				UNIT-V					
9	a	Evaluate the importance of To	• •	•	t (TQM	1).	CO5	L4	6M
	b	Express the importance of Six	Sigma in	-			CO5	L2	6M
10	_	What is EDD9 E-1-1-41-	-:	OR fEDD mostroe	200		005	т 1	/]
10	a b	What is ERP? Explain the sign Justify the statement "Perfor		-		to devolor	CO5 CO5	L1 L5	6M 6M
	b	management efficiency"	manue ma	magement 18	a 1001	to develop	003	13	UNI

ŵ

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. III Year I Semester Supplementary Examinations June/July-2025 ELECTRICAL DISTRIBUTION AND AUTOMATION

(Electrical & Electronics Engineering)

Time: 3 Hours

(Answer all Five Units $5 \times 12 = 60$ Marks)

Max. Marks: 60

L4

12M

UNIT-I

H.T.No.

A power station has to meet the following demand : CO1
Group A : 200 kW between 8 A.M. and 6 P.M.
Group B : 100 kW between 6 A.M. and 10 A.M.
Group C : 50 kW between 6 A.M. and 10 A.M.
Group D : 100 kW between 10 A.M. and 6 P.M. and then between 6
P.M. and 6 A.M.
Plot the daily load curve and determine (i) diversity factor (ii) units generated per day (iii) load factor.

R20

2 a What is Diversity factor? What is the importance of diversity factor? CO1 L1 6M
b A power station has a maximum demand of 15000 kW. The annual load CO1 L4 6M factor is 50% and plant capacity factor is 40%. Determine the reserve capacity of the plant.

UNIT-II

3 A single phase distributor one km long has resistance and reactance per CO2 L3 12M conductor of 0·1 Ω and 0·15 Ω respectively. At the far end, the voltage V_B = 200 V and the current is 100 A at a p.f. of 0·8 lagging. At the midpoint M of the distributor, a current of 100 A is tapped at a p.fof 0·6 lagging with reference to the voltage V_M at the midpoint. Calculate :
(i) voltage at mid-point (ii) sending end voltage V_A (iii) phase angle between V_A and V_B.

OR

4 A two-wire DC distributor AB, 600 meters long is loaded as under: CO2 L3 12M Distance from A (meters): 150 300 350 450

Loads in Amperes : 100 200 250 300

- The feeding point A is maintained at 440V and that of B at 430V. If
- each conductor has a Resistance of 0.01Ω per 100 meter, calculate (i) The current supplied from A to P (ii) The name is in the
- (i) The current supplied from A to B (ii). The power dissipated in the distributor

UNIT-III

5 a What is Neutral grounding? What are the advantages of neutral CO3 L1 6M grounding.
b Explain how to decide the rating of a distribution a substation? CO3 L2 6M

OR

6 Draw the layout and schematic connection Pole-Mounted Sub-Station? CO3 L3 12M Give the advantages and disadvantages.

UNIT-IV

7		A single phase A.C. Generator supplies the following loads :	CO4	L4	12M
		(i) Lighting load of 20 kW at unity power factor. (ii) Induction motor			
		load of 100 kW at P.F 0.707 lagging. (iii) Synchronous motor load of 50			
		kW at P.F 0.9 leading. Calculate the total KW and KVA delivered by			
		the generator and the power factor at which it works.			
		OR			
8	a	Explain the effect of shunt compensation on distribution system.	CO4	L2	6M
	b	Why a consumer having low power factor is charged at higher rates?	CO4	L2	6M
		UNIT-V			
9	a	What are the communication methods?	CO5	L1	6M
	b	What are the benefits of distribution automation.	CO5	L1	6M
		* OR			
10	a	Explain about Information technology and LAN.	CO5	L2	6M
	b	Explain about Sensors.	CO5	L2	6M
		*** END ***			

Time: 3 Hours

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

H.T.No.

B.Tech III Year I Semester Regular & Supplementary Examinations June-2025 ESTIMATION, COSTING AND VALUATION

(Civil Engineering)

Max. Marks: 60

L3

12M

CO1

(Answer all Five Units 5 x 12 = 60 Marks)

Estimate the quantities of the following items of a two roomed building from the given plan and section using Long Wall – Short Wall method. (1) earth work in excavation in foundation, (2) Lime concrete in foundation, (3) 1st class brickwork in cement mortar 1:6 in foundation and plinth, (4) 2.5 cm c.c damp proof course, and (5) 1st class brick work in lime mortar in superstructure?

R20

Doors D – 1.2 m x 2.10 m Windows W – 1.00 m x 1.50 m Shelves S – 1.00 m x 1.50 m

2

OR

- Estimate the quantities of the following items of a two roomed building CO1 L3 12M from the given plan and sections shown below: (a) Earthwork in excavation in foundation,
 - (b) Lime concrete in foundation,
 - (c) 1st class brickwork in 1:6 cement mortar in foundation and plinth,

(d) 2.5 cm thick damp proof course and

(e) 1st class brick work in 1:6 cement mortar in superstructure?

3 Detailed dimensioned cross-section of a city street having mettled portion of 8 m for the carriageway is shown in figure. Prepare an estimate for constructing 500 m length of this street? Indicate also the quantities of materials.

OR

4 A hill road is to be constructed in side-long ground in cutting. Calculate the quantity of earthwork for two chain length in between 10th to 12th chainage, the length of chain being 30 m? The depth of cutting at the chainage 10 is 3.60 m at the centre and cross slope of ground is 8:1 CO2 L3 12M

CO2

L3

12M

(H:V). The depth of cutting at the chainage 11 is 3.00 m at the centre and cross slope of ground is 12:1 (H:V). The depth of cutting at the chainage 12 is 4.20 m at the centre and cross slope of ground is 10:1 (H:V). Formation width is 10 m and side slopes of cutting are 1.5:1 (H:V). Estimate the cost of earthwork using Mid-Sectional Area, Mean Sectional Area and Prismoidal Method if the rate of earthwork in exaction is Rs.275 % cu.m?

UNIT-III

A cantilever RC beam projects beyond the fixed end by 3 m and is 30 cm x 60 cm at fixed end and reduced to 30 cm x 15 cm at the free end. At the fixed end, the beam is reinforced with 4 bars of 20 mm dia at the top and 2 bars are curtailed at a distance of 1.41 m from the fixed end, but the remaining 2 bars continued up to the free end. The beam is provided with

5

6 mm dia two legged stirrups at 20 cm centre to centre for the entire length. At the bottom there are 2 bars of 10 mm dia. as stirrup fixture. Weight of bars are 20 mm = 2.47 kg/m, 10 mm = 0.62 kg/m, 6 mm =0.22 kg/m. assume 25 mm clear cover and the main bars are suitably anchored, but is not needed in the estimate. Estimate the quantity of reinforcement.

6 Figure shows the longitudinal section and cross-section of a simple beam of clear span 5.0 m. The thickness of the supporting wall is 30 cm. Work out the total quantity of the reinforcement in the beam?

- 7 a Work out rate per cu. m for RCC work in beams and slabs with 1:1½:3 CO4 L3 6M cement concrete?
 b Arrive at the rate for I-class brickwork in superstructure with CO4 L3 6M
 - 20 x 10 x 10 cm bricks with 1:6 cement sand mortar?
- 8 a What is the rate per sq. m for providing white washing one coat? CO4 L3 6M

CO3 L3 12M

CO3 L3 12M

b Calculate rate per sq. m for laying 2 cm thick damp proof course with CO4 I.3 6M 1:2 cement mortar?

UNIT-V

9	a	Write the detailed specifications for earthwork excavation.	CO5	L2	6M
	b	What are the different specifications for first class brick work.	CO5	L2	6M
		OR			

10 In a plot of land costing Rs.20,000.00 a building has been newly CO5 constructed at the total cost of Rs.80,000.00 including sanitary and water supply works, electrical installation, etc. The building consists of four flats for four tenants. The owner expects 8% return on the cost of construction and 5% return on the cost of land. Calculate the standard rent for each flat of the building assuming:

(i) The life of the building as 60 years and sinking fund will be created on 4% interest basis.

(ii) Annual repairs cost at 1% of the cost of construction.

10 () L 2 b 4

(iii) Other outgoings including taxes at 30% of the net return on the building?

*** END ***

L3

12M

.

ž

<u> </u>	-				
		SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS)	(:: PUT	TUR	
		B.Tech III Year I Semester Supplementary Examinations June	e-2025		
		SOFTWARE ENGINEERING & TESTING			
Tim	10.	(Computer Sceince and Information Technology) 3 Hours	Mox	Mark	
	IC.	(Answer all Five Units $5 \times 12 = 60$ Marks)	Max.	Mark	s: 00
		UNIT-I			
1	я	Explain in detail the following software metrics with example.	CO 1	L2	6M
L	a	i) Size metric.	COI		UIVI
		ii) Token Count.			
	b	Write a program in C language. List out the operators and operands and	CO1	L5	6M
		also calculate the values of software science measures like η , N, V, E,			8
		and λ .			
		OR			
2		List the process maturity levels in SEI's CMM. Explain each level.	CO1	L2	6M
	b	Analyze Functional Point Analysis (FPA) with an example.	CO1	L2	6M
		UNIT-II	~~~		
3	a	1	CO2	L6	6M
		development expected to involve 12 person-years of effort Software Project Planning.			
		(i) Calculate the number of lines of source code that can be			
		produced.			
		(ii) Calculate the duration of the development.			
		(iii) Calculate the productivity in LOC/PY			
		(iv) Calculate the average manning			
	b	Identify typical software risk factors. Explain the risk management	CO2	L2	6M
		activities			
4		OR	000	T	
4		Interpret the Putnam resource allocation model. A software development project is planned to cost 95 MY in a period of	CO2 CO2	L6 L2	6M
	U	1 year and 9 months. Calculate the peak manning and average rate of	002	LZ	6M
		software team build up.			
		UNIT-III			
5	a	Describe the various strategies of design. Which design strategy is most	CO3	L2	6M
		popular and practical?			0112
	b	Define cohesion and coupling. Explain relationship between cohesion	CO3	L1	6M
		and coupling.			
		OR			
6	a	Discuss the basic model of software reliability. How $\Delta \mu$ and $\Delta \tau$ can be	CO3	L6	6M
	7.	calculated	000		
	D	b Compare hardware reliability with software reliability	CO3	L2	6M
-		UNIT-IV	001		01
7	a	Consider a program for the determination of the nature of roots of a	CO 4	L6	6M
		quadratic equation. Its input is a triple of positive integers (say a,b,c) and values may be from interval [0,100]. The program			
		output may have one of the following words. [Not a quadratic			
		equation; Real roots; Imaginary roots; Equal roots] Design the			
		boundary value test cases.			
	b	Explain the boundary value analysis testing techniques with the help of	CO 4	L2	6M
		an example.			

H.T.No.

R20

		OR			
8	a	Explain mutation testing technique.	CO4	L2	6M
	b	Compare various debugging technique.	CO4	L2	6M
		UNIT-V			
9	a	What is reverse engineering? Discuss levels of reverse engineering.	CO5	L6	6M
	b	What are configuration management activities? Draw the Performa of	CO5	L6	6M
		change request form.			
		OR			
10	a	Classify different categories of software documentation.	CO5	L1	6M
	b	Compare New software development and Re-engineering.	CO5	L4	6M
		*** END ***			

H.T.No.			
---------	--	--	--

		SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS)	:: PUTI	TUR	
		B.Tech. III Year I Semester Supplementary Examinations June HEAT AND MASS TRANSFER	∍/July-2	2025	
		(Mechanical Engineering)		-1	-
Time	: 3	HOUIS	ax. Ma	rks: (50
2		(Answer all Five Units 5 x 12 = 60 Marks) UNIT-I			
1	a	Define the following terms.	CO1	L1	6M
		i).Heat ii).Heat transfer			
	b	List the basic laws which govern the heat transfer.	CO1	L1	6M
		OR			
2	a	What is Fourier's law of conduction? State the assumption and essential feature of it.	CO1	L1	6M
	b	Distinguish between conduction, convection and radiation modes of heat	CO4	L1	6M
÷.		transfer.			
		UNIT-II	~~~	X A	
3	a	Derive an expression for heat conduction through a composite wall.	CO2 CO2	L3	6M
b A reactor's wall, 320 mm thick, is made up of an inner layer of fire brick				L3	6M
		(k = 0.84 W/m °C) covered with a layer of insulation $(k = 0.16 W/m °C)$.			
		The reactor operates at a temperature of 1325 °C and the ambient			
		temperature is 25 °C. Determine the thickness of fire brick and			
		insulation which gives minimum heat loss.			
		OR	~~~		
4	a	Obtain the expression of heat conduction through hollow cylinder.	CO2	L3	6M
	b	A spherical shaped vessel of 1.4 m diameter is 90 mm thick. Find the	CO2	L3	6M
		rate of heat leakage, if the temperature difference between the inner and			
		outer surface is 220 °C. Thermal conductivity of the material of the			
7		sphere is 0.083 W/m °C.			
		UNIT-III			
5	a	What is convective heat transfer? Distinguish between free and forced convection.	CO3	L4	6M
	հ	Derive the expression for Reynolds number and how flows are	CO3	L3	6M
	IJ	determined by Reynolds number?			
		OR			
6	9	Define Nusselt number, Prandtl number and their significance.	CO3	L1	6M
U	a b	Air stream at 24 °C is flowing at 0.4 m/s across a 100 W bulb at 130 °C.	CO3	L4	6M
3)	U	If the bulb is approximately by a 65 mm diameter sphere. Calculate			
		i.) The heat transfer rate, ii.) The percentage of power lost due to			
		convection.			
		UNIT-IV			
_			CO3	L2	6M
7	a -	Define Radiation heat transfer.		L2 L2	6M
	b	Discuss the different types of processes for condensation of vapours on a	000		VATE
		solid surface.			
		UK			

- a What are the applications of boiling and condensation process? CO4 L1 6M
 - b Explain Stefan Boltzmann Law, Kirchhoff's Law.

8

UNIT-V

- 9 In a certain double pipe heat exchanger hot water flow at a rate of 5000 CO5 L4 12M kg/h and gas cooled from 95 °C to 65 °C. At the same time 50000 kg/h of cooling water at 30 °C enters the heat exchanger. The flow conditions are that L4overall heat transfer coefficient remains constant at 2270 W/m2 K. Determine the heat transfer area required and the effectiveness, assuming two streams are in parallel flow. Assume for the both the streams cp = 4.2 kJ/kg K.
 - OR

*** END ***

10 The flow rate of hot and cold water streams running through a parallel CO5 flow heat exchanger are 0.2 kg/s and 0.5 kg/s respectively. The inlet temperatures on the hot and cold sides are 75 °C and 20 °C respectively. The exit temperature of hot water is 45 °C. If the individual heat transfer coefficients on the both sides are 650 W/m2 °C, calculate the area of heat exchanger.

L4 12M

CO4

L2

6M

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. III Year I Semester Supplementary Examinations June/July-2025 ELECTRICAL MACHINES -III

(Electrical & Electronics Engineering)

Time: 3 Hours

2

(Answer all Five Units $5 \times 12 = 60$ Marks)

Max. Marks: 60

UNIT-I

a Explain the principle of operation of a synchronous generator.
b An 8 pole, 3 phase 60 degree spread double layer winding has 72 coils
cO1 L2 6M
in 72 slots. These coils are short pitched by two slots. Calculate the winding factor for the fundamental and third, fifth harmonics.

OR

a Write short notes on
i) Pitch factor ii) Distribution factor with relevant derivations.
b An alternator is operating at no load has an induced EMF of 346.4 V/ph
b CO1 L3 6M and a frequency of 60Hz. If the pole flux is decreased by 15% & the speed is increased by 6.8%; Determine

i. the induced EMF ii. frequency

UNIT-II

- 3 a A three-phase star-connected alternator is rated at 1500 kVA, 1200V. CO2 L4 6M The armature effective resistance and synchronous reactance are 2 Ω and 35 Ω respectively per phase. Calculate the percentage regulation for a load of 1200 kW at a power factor of 0.8 lagging.
 - **b** Define the voltage regulation of an alternator. Explain the various CO3 L1 6M factors, which may affect the regulation of an alternator.

OR

a Explain the significance of the short circuit ratio for finding voltage CO2 L2 6M regulation.
 b Define CO2 L4 6M

i) Armature resistance ii) Leakage reactance iii) synchronous reactance iv) Synchronous impedance

UNIT-III

- 5 a Derive the expression for synchronizing current, synchronizing power CO3 L2 6M and synchronizing torque.
 - **b** Explain necessity of parallel operation of alternators.

6M

CO3

L2

OR

- 6 a Derive the expression for circulating current for dissimilar alternators CO3 L2 6M connected by a common load.
 - b Explain the effect of change in excitation and mechanical power input of CO3 L2 6M an alternator.

UNIT-IV

7 a Explain the construction and working principle of a synchronous motor. CO5 L2 6M

b A three-phase 500V star-connected synchronous motor gives a net CO5 L4 6M output of 17 kW on full load operating at 0.9 lagging power factor. Its armature resistance is 0.8 Ω per phase. The mechanical losses are 1300 W. Estimate the current drawn by the motor and full load efficiency.

OR

8 a Explain the power flow equation of synchronous motor.
b A 3-phase 11000V, the star-connected synchronous motor takes a load
current of 100A. The effective synchronous reactance and resistance per phase are 30 Ω and 0.8 Ω respectively. Find the power supplied to the

motor and induced EMF for i) 0.8 p.f lag ii) 0.8 p.f lead.

UNIT-V

- 9 a State the methods of starting the synchronous motor. Explain any two CO6 L1 6M detail.
 - b An industrial load of 800 kW is operating at 0.6 lagging power factor. It CO6 L3 6M is desired to improve the factor to 0.92 lagging by connecting a synchronous motor driving load of 200 kW with an efficiency of 91%. Determine the KVA rating of the synchronous motor and the power factor at which it is operating.

OR

10 A 3-phase, 3300V, star-connected synchronous motor has an effective CO6 L3 12M resistance and synchronous reactance of 2 Ω and 18 Ω per phase respectively. If the open circuit generated e.m.f is 3800 V between lines, calculate i) The maximum total mechanical power that the motor can develop and ii) The current and power factor at the maximum mechanical power.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) B.Tech. III Year I Semester Supplementary Examinations June/July-2025

R20

TRANSPORTATION ENGINEERING

H.T.No.

(Civil Engineering)

Time: 3 Hours

4

(Answer all Five Units $5 \times 12 = 60$ Marks)

Max. Marks: 60

UNIT-I

1 A valley curve is formed by a descending gradient of 1 in 40 meeting CO1 L3 12M with an ascending gradient of 1 in 30. Design the length of valley curve for a design speed of 120 kmph so as to fulfill both comfort conditions and head light sight distance requirements. Assume rate of change of change of centrifugal acceleration as 0.6 m/sec³, reaction time 1.5 sec and coefficient of friction 0.30.

OR

2 a Explain any four highway cross-sectional elements.
b What are the engineering surveys conducted to fix the alignment of a CO1 L2 6M highway?

UNIT-II

3	a	Explain briefly about traffic control devices.	CO2	L2	6M
	b	What are the different types of off-street parking facilities that can be	CO2	L2	6M
		provided ina given area?			

OR

a Give the classification of road markings.
b Define 'Optimum Cycle Time' used in Signal Design by Webster CO2 L2 6M method.

UNIT-III

- 5 a With sketch show the different components of a rigid pavement and CO3 L2 8M mention the functions of Each.
 b List out the types of pavement based on structural behaviour. CO3 L2 4M OR
- 6 a What are the factors should be considered for the design of flexible and CO3 L2 8M rigid pavements Discuss the significance of each.
 - b Draw the stress distribution and cross section in flexible payements and CO3 L3 4M rigid pavements?

UNIT-IV

7	a	Discuss briefly about the functions of different components of permanent way.	CO4	L2	6M	
	b	Draw a typical cross section of permanent way and show various	CO4	L2	6M	
		components.				
		OR				
8	a	What are the advantages and disadvantages of concrete sleepers?	CO4	L2	6M	
	b	Explain the concept of creep using percussion theory.	CO4	L2	6M	
		UNIT-V				
9	a	What is cant deficiency? Discuss briefly about the limits of cant	C05	L2	6M	
		deficiency.				
	b	Explain briefly about types of Marshalling yards.	CO5	L2	6M	_
		OR				1
10	a	Define grade compensation? If the ruling gradient is 1 in 120 on a	CO5	L3	6M	
		particular section of MG and at the same time a 2.6 degree curve is				
		situated on this ruling gradient, find out the allowable ruling gradient.	2			
	b	What are the operational classifications of stations?	CO5	L2	6M	
		*** END ***				

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

H.T.No.

(AUTONOMOUS)

R20

B.Tech. III Year I Semester Supplementary Examinations June/July-2025

DESIGN OF MACHINE ELEMENTS-I

(Mechanical Engineering)

Time: 3 Hours

Max. Marks: 60

(Answer all Five Units 5 x 12 = 60 Marks) UNIT-I

- 1 a List out the general design consideration to be followed while designing CO1 L1 6M a machine element.
 - b Identify various manufacturing consideration to be followed in CO1 L1 6M designing a machine element.

OR

2 A hollow shaft of 40 mm outer diameter and 25 mm inner diameter is CO1 L4 12M subjected to a twisting moment of 120 N-m, simultaneously, it is subjected to an axial thrust of 10 kN and a bending moment of 80 N-m. Calculate the maximum compressive and shear stresses.

UNIT-II

3 A mild steel shaft of 50 mm diameter is subjected to a bending moment CO2 L3 12M of 2000 N-m and a torque T. If the yield point of the steel in tension is 200 MPa, find the maximum value of this torque without causing yielding of the shaft according to 1. The maximum principal stress; 2. The maximum shear stress; and 3. the maximum distortion strain energy theory of yielding.

OR

Cylindrical shaft made of steel of yield strength 700 MPa is subjected to CO2 L3 12M static loads consisting of bending moment 10 kN-m and a torsional moment 30 kN-m. Determine the diameter of the shaft using two different theories of failure, and assuming a factor of safety of 2. Take E = 210 GPa and poisson's ratio = 0.25.

UNIT-III

- 5 a Discuss on bolts of uniform strength with practical applications of such CO3 L2 6M bolts.
 - b A lever loaded safety valve has a diameter of 100 mm and the blow off CO3 L3 6M pressure is 1.6 N/mm². The fulcrum of the lever is screwed into the cast iron body of the cover. Find the diameter of the threaded part of the fulcrum if the permissible tensile stress is limited to 50 MPa and the leverage ratio is 8.

6

UNIT-IV

7 A steel solid shaft transmitting 15 kW at 200 r.p.m. is supported on two CO4 L3 12M bearings 750 mm apart and has two gears keyed to it. The pinion having 30 teeth of 5 mm module is located 100 mm to the left of the right hand bearing and delivers power horizontally to the right. The gear having 100 teeth of 5 mm module is located 150 mm to the right of the left hand bearing and receives power in a vertical direction from below. Using an allowable stress of 54 MPa in shear, determine the diameter of the shaft.

OR

8 Design a knuckle joint to transmit 150 kN. The design stresses may be CO5 L3 12M taken as 75 MPa in tension, 60 MPa in shear and 150 MPa in compression.

UNIT-V

9 Describe, with the help of neat sketches, the types of various shaft CO6 L2 12M couplings mentioning the uses of each type.

OR

10 Design and draw a clamp coupling to transmit 30 kW at 100 r.p.m. The CO6 L3 12M allowable shear stress for the shaft and key is 40 MPa and the number of bolts connecting the two halves are six. The permissible tensile stress for the bolts is 70 MPa. The coefficient of friction between the muff and the shaft surface may be takeSn as 0.3.

Margin.

H.T.No.

2	UNIT-V			
9	a Define state, state variable, state equation.	CO5	L2	6M
	b Find state variable representation of an armature controlled D.C motor.	CO5	L3	6M
	OR			
10	Find a state model for the system whose Transfer function is given by	CO5	L4	12M
	$G(s)H(s) = \frac{(7S^2 + 12S + 8)}{(S^3 + 6S^2 + 11S + 9)}$			

*** END ***

вÇ.

Page 1 of 2

- (AUTONOMOUS) B.Tech. III Year I Semester Supplementary Examinations June/July-2025 STRUCTURAL DESIGN (Civil Engineering) **Time: 3 Hours** Max. Marks: 60 (Answer all Five Units $5 \times 12 = 60$ Marks) **UNIT-I** A reinforced concrete beam of size 230mm x 450mm overall, carries a 1 **CO1** L4 12M 'udl' of 20 kN/m excluding self-weight, the effective span of beam is 5.5m. Design the reinforcement for the beam. Use M20 grade concrete and Fe500 steel assuming an effective cover of 40mm. OR 2 A reinforced beam of rectangular section 300mm x 450mm has CO1 L3 12M reinforcement of 6# of 20mm as tension reinforcement and 2# of 16mm as compression reinforcement. Find the ultimate moment of resistance of the beam using M20 grade concrete and Fe250 grade steel. Assume effective cover as 35mm. UNIT-II Design a rectangular simply supported RC beam over a clear span of CO2 3 12M L4 6m, if the super imposed load is 12 kN/m and the support width is 230mm. Use M20 grade concrete and Fe415 steel. The beam to have a width of 300mm. Design the shear reinforcement and do the check for deflection. OR 4 Design a reinforced concrete slab to carry a live load of 3 kN/m^2 on an CO2 L4 **12M** effective span of 3.5m. Use M20 concrete & Fe415 steel. Assume floor finish as 1 kN/m^2 **UNIT-III** A reinforced concrete column of size 300mm x 300mm carries a load of CO4 5 L4 **12M** 750 kN. The safe bearing capacity of soil is 200 kN/m². Design an isolated column footing with uniform thickness. Use M20 grade concrete and Fe415 steel. OR Design a short axially loaded square column 500mm x 500mm for a CO3 6 L4 **12M** service load of 2000 kN. Use M20 grade concrete and Fe415 HYSD bars. UNIT-IV a Explain various types of structural steel used in construction. 7 L2 **CO5 6M b** Explain various types of bolted connections with neat sketch. **CO5** L2 **6M** OR 8 Design a double angle tension member connected on each side of a CO5 L4 **12M** 10mm thick gusset plate, to carry an axial load of 375 kN. Use 20mm black bolts. Assume shop connection. **UNIT-V** 9 Design a double angle discontinuous strut to carry a factored load of 135 CO6 L4 12M kN resulting from combination from wind load. The length of the strut is 3m between intersections. The two angles are place back-to-back (with long legs connected) and are tack bolted. Use steel grade of E250
 - i) Angles are placed on opposite sides of 12mm gusset plate
 - ii) Angles are placed on same side of 12mm gusset plate.

O.P.Code: 20CE0119

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

R20

10 Design a simply supported beam of 10m effective span carrying a CO6 L4 12M factored load of 60 kN/m. Depth of beam should not exceed 500mm. Compression flange of beam is laterally supported by floor construction. Assume stiff end bearing is 75mm.

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) B.Tech. III Year I Semester Supplementary Examinations June/July-2025

AUTOMATA THEORY AND COMPILER DESIGN

(Common to CSM,CIC & CAI)

Time: 3 Hours

Max. Marks: 60

L2

L6

5M

7M

CO1

CO2

(Answer all Five	Units 5 x 12	= 60 Marks)
	UNIT-I	

- 1 a Compare DFA and NFA.
 - **b** Construct DFA for the given NFA

	Next state			
	0	1		
$\rightarrow q0$	<i>q0,q1</i>	q0		
q1	q2	q1		
q2	<i>q3</i>	q3		
<i>q</i> 3	×	q2		

OR

2	a	Write the process of conversion from NFA with ε moves to DFA.	CO3	$\mathbf{L4}$	6M
	b	Convert the following NFA with ε moves to DFA.	CO2	L6	6M

3	a	State the formal of PDA.	CO5	L1	6M		
	b	Construct an equivalent PDA for the following CFG.	CO5	L6	6M		
		S→aAB bBA					
		A→bS a					
		$B \rightarrow aS b.$					
OR							
4	a	Explain the various types of Turing machine.	CO6	L2	6M		
	b	Differentiate PCP and MPCP.	CO6	L4	6M		
	UNIT-III						
5	a	Describe the role of Compiler.	CO1	L1	4M		
	b	Design the recursive decent parser for the following grammar.	CO3	L6	8M		
		E→E+T/T					

T→T*F/F F→(E)/id

6	a	Explain LEX Tool with the structure of Lex Program.	CO3	L2	8 M
	b	Illustrate Application of compiler technology.	CO1	L3	4 M
		UNIT-IV			
7	a	Explain syntax directed definition with simple examples.	CO2	L2	6M
	b	Describe in detail the Translation scheme of SDD.	CO2	L2	6M
		OR			
8	a	Explain about handle pruning.	CO1	L2	6M
	b	Summarize about SLR parsing.	CO1	L2	6M
		UNIT-V			
9	a	Discuss function preserving transformations.	CO6	L2	6M
	b	Describe about loop optimization technique.	CO5	L2	6M
		OR			
10	a	Define and Show Dead-code elimination with example.	CO4	L1	6 M
	b	List and explain the Issues in the design of a code generator.	CO 6	L2	6M
		*** END ***			

4 ĝ